Biomimetic Hydroxyapatite Deposition on Titanium Oxide Surfaces for Biomedical Application

نویسندگان

  • Wei Xia
  • Carl Lindahl
  • Jukka Lausmaa
  • Håkan Engqvist
چکیده

Titanium is widely used as material for permanent implants in orthopedic and dental applications. It is well known that Ti shows a mechanically stable interface towards bone (osseointegration). The good biological properties are due to the beneficial properties of the native oxide (TiO2) that forms on Ti when exposed to oxygen. The native titanium oxide on Ti is usually amorphous and very thin, 2–7 nm [1-3]. In addition to being stable in the physiological environment, titanium oxides increase calcium ion interactions, which are important for protein and subsequent osteoblast adhesion [4]. Enhanced bone bonding can be achieved with bioactive materials that form a stable unit with bone through a spontaneous formation of hydroxyapatite (HA) on their surface. The biomineralized HA layer acts as a bonding layer to the bone and integration at the atomic/molecular scale can develop. For this reason HA is proposed as a suitable coating material to provide stronger early fixation of uncemented prostheses. Although hydroxyapatite coatings on implants showed long-term survival [5], there are concerns about their reliability under loads. Possible ways to overcome this lack of mechanical stability could be by reinforcing the HA with metal oxides such as zirconia and alumina [6]. Apatites, as well as other calcium phosphates (CaPs), can occur in different phases, summarized in Table 1 [7]. Most of them have been studied as biomaterials. The HA naturally occurring in bone is a multi-substituted calcium phosphate, including traces of CO32, F-, Mg2+, Sr2+, Si4+, Zn2+, Li+ etc [8, 9]. These ionic substitutions are considered to play an important role for the formation and properties of bone. Hydroxyapatite coatings can be produced by different methods [10-19]. Early attempts used plasma spraying, which however resulted in coatings with adhesion problems. Attempts have also been made with physical vapour deposition (PVD) techniques. Both of these methods suffer from the drawback that they are line-of-sight methods, which means that coating of complex implant geometries is technically difficult. The biomimetic way to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials

Lindahl, C. 2012. Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 986. 57 pp. Uppsala. ISBN 978-91-554-8510-8. The clinical success of a bone-anchored implant is controlled by many factors such as implant shape, chemical composition, mechanic...

متن کامل

Surface Activation of NiTi Alloy by Using Electrochemical Process for Biomimetic Deposition of Hydroxyapatite Coating (TECHNICAL NOTE)

Electrochemical depositions of calcium phosphate (Ca-P) film on NiTi alloy in concentrated simulated body flood (SBF×5) were carried out by cathodic polarization. The Ca-P layer was successfully deposited on Ni-Ti alloy substrate under 10mA/cm2 current density for 2 hours at room temperature. Then, in order to investigate the bioactivity of the pre-calcified samples, they were immersed in SBF f...

متن کامل

Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique

Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...

متن کامل

Deposition of Nano-Crystalline Fluor-hydroxyapatite Coatings on Titanium Substrates via Sol-Gel Method

      In this investigation, fluor-hydroxyapatite (FHA) film was deposited on a titanium substrate by sol-gel method. Triethyl phosphite, ammonium fluoride and calcium nitrate in ethanol solutions were used respectively as P, F and Ca precursors. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 550, 700 and 800 ºC, the coating layers were ...

متن کامل

Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats

Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012